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LIST OF SYMBOLS AND ABBREVIATIONS

Notation

a proportional to, attenuation coefficient
= distributed as

E approximately equal

E[-] expected value of -

var[ -] variance of

cov[-] covariance, especially for vectors
u ‘ E[ 1, mean

o standard deviation=var%, or scatter
kV kilo volts

MV mega volts

[R] Angstrom, 10710 meters

e electron charge

Mg mass of electron

h Planck's constant

c speed of light

X wavelength

§] voltage

J current

0 specific gravity

u specific attenuation coefficient

T specific absorption
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1. INTRODUCTION

The use of composite materials in light weight high performance
components has become increasingly more popular [Reference 31], especially for
aircraft components. Some of the advantages they offer over conventional
materials are their increased stiffness to weight ratio while resisting
to extreme environmental conditions, such as high temperature and
chemical corrosion. Common to such components is their complicated
internal structure.

Examples of such components are carbon-carbon composites which
form parts of rocket motors (fabricated from three dimensional woven
preforms) and engine turbine blades with internal cooling passages.

Among the various non-destructive evaluation (NDE) methods X-ray
techniques are regarded as being very promising for detecting deep
subsurface flaws.

The success and fine resolution of computer aided tomography (CT)
scanners in medical diagnosis [References 16, 17, 19, 41] for the detection of
tissue density abnormalities in complex anatomical structures prompted
the interest in how this technique might be adapted to serve as a new
NDE tool. However, many of the objectives and the structure of certain cost
functions and the degree of variability of structures to be examined
distinguish the NDE environment from the medical. Thus, an investigation
and somewhat different analysis of the performance of Tomography when
applied to the NDE environment is called for.

One of the first questions which arise in this new context concerns



the understanding of the relation between the complexity of a test object
and the number of projections (scans) necessary for detecting abnormalities.
Intuitively there abpears to be a relationship. Consider first the problem
of detecting a void in a homogenous cube by taking a face-on X-ray
projection. Apparently a single projection would suffice to detect the
presence of that void, although some uncertainty would remain regarding

its precise three dimensional location,

Alternatively consider the human head with its variable geometry
and the many different materials with variable X-ray density of which
it is made up. Here the detection of a slight abnormality-even with
perfect measurements - would not be possible with a single projection.

This is recognized in CT-scanners which use of the order of 100 projections
for image reconstruction.

Some of the materials of interest for NDE appear to have an intermediate
level of structural complexity, when compared with above examples.
Consider for example the rocket nozzle shown in Figure 1.1. A counterpart
in terms of complexity, in the medical environment, is apparently the
human breast with its glandular structure. It is interesting to note
that for mammography two projections of the compressed breast provide
often adequate diagnostic information and seem to be preferred over
tomoqraphic methods. These observations suggest to investigate the
possibility to examine also composite materials with an intermediate
level of scans (projections), say two or three [Figure 1.2].

In NDE of composite materials, where often a Targe number of similar

parts are inspected, further aspects enter consideration of limited scan
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Figure 1.1: Schematic of a Cylinder manufactured from layers
of woven carbon fibers. In this example the
Tayers follow an Archimedes spiral. Interfaces
are particularly susceptible to contain cracks.
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Figure 1.2: Examples of 2-scan pencil beam and 3-scan fan beam
arrangement. For clarity only one X-ray source 1is
indicated in each example.
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tomography. For example it appears that relatively precise prior
information about a test object is available and should be used.

Another aspect is the desire to reduce scanning time for high speed

NDE. The questions are: how can this be accomplished and what are the
limitations of possible techniques or should this techhique be combined
with other techniques such as full CT scanning of suspicious parts.

In order to respond to such questions a systematic approach is necessary.
For the particular nroblem of flaw detection by radiographic techniques
modern estimation theory provides this systematic approach.

The first requirement in the analysis through estimation theory is
the development of models of phenomena which are capable of mathematical
analysis. Typically, we start out with very simple models which show
some select major propertiés of a problem. Then progressively other
phenomena are incorporated into the simpler models and their performance
degrading or improving properties are studied.

Following this concent we start out (Section 2.1) with some basic
considerations about projections and solutions to the full-scan CT.

Next we introduce basic considerations and a description of what could

be regarded as limited scan CT for discrete image elements; this is followed
by the introduction of a probabilistic generalization. At this point

in Section 3 it becomes important to study in more detail the basic
physical phenomena of X-ray generation, absorption, scatter and detection
before moving on to an analysis of the impact of these on estimation
(Section 4). As we go along we develop the necessary models based on

the basic physical phenomena and give approaches to optimal or suboptimal
estimation. Finally in section 5 we give a comparison of the performance

of the full scan with the Timited scan technique.



2. BASIC CONSIDERATIONS ABOUT PROJECTIONS
2.1 Use of Projections in Image Reconstruction

The most basic way to study properties of X-ray images begins with
the analysis of a highly idealized situation. As shown in Figure 2.1
the projection (line integral) at every point s for a given projection

angle 6 is discribed by the 1inear model [Reference 10]

b
P f(s) = s flsu (o) + tnfe)] dt (2.1)
a
where
u{e) = (cos @, sin e)T (2.2)
n(e) = (-sin g, cos e)T

Roughly, this quantity Pe f(s) is measured in CT. In full scan CT the
problem is to reconstruct f[su(s) + tn(e)] = f(x,y) from many projections

Pei. This problem has first been considered by Radon [Reference 34] and many

methods for solving this problem approximately are available today [Reference [17].
Since the projection as defined in (Equation 2.1) is a linear transform of

flx.J it is appealing to approach the inversion (reconstruction) by a

linear transform. Using a linear reconstruction scheme has many advantages

on an analytic level and from a numerical point of view. A method which

has become particularly popular in medical CT-scanning is the filtered

backprojection method which provides one such linear transform of

measured projections.

The filtered backprojection method is specified in the following way

[Reference 10]. Define the backprojection operator Bi for direction 8; by

[B; (v)1(x) =y(si)==y(x1cosei 4 xzsinei). (2.3)
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Relation of picture elements a(2) to projection b(k).
From the area of intersection of the receptive field of
detector k the elements of the matrix A may be computed.
For the general relation shown analytic approaches are
difficult.



Then, for projection i, filter the measurement with the (noncausal) filter

“i(si) to yield a smoothed projection Bi(si) = Pe f(si)*“i(si) and finally
.i

average over all projections 8 to obtain an approximation f[x] of the

original f[x] as

[B; (P, f%a;)1(x) (2.4)

fx] =]ﬁ :
1

1~ =

i

which, as shown by Davison [10] equals also

1
m

.i

nes 3

(B fra )k w (54)) (2.5)

where <, > indicates the inner product. In this case it is convenient

to regard

B_i ay ](i) (2.6)

nes 3

Flx) = [J;

as the point response function of the method - a point function located

i=1

at x=0 would precisely generate it. Note that the approximation in (2.4) is

therefore equivalent toa 2-dimensional convolution (smoothing) of the original

f(x) by means of the point response function F(x). Typically the filters a; are smooth-

ing the projection data Teading to an image which is a smoothed version of the original.
As we mentioned before, the filtered back projection method is one

particular method for finding a linear transform of measurements. The

method could easily be generalized by assuming oy to be nonstationary,

in s or by assuming a more general linear transform than the filtered back-

projection, Bi“i’ say, by a general 2 dimensional weight function. In section

section 4 we will discuss some indication in which way one may wish,

to modify the filtered backprojection method. One of the conveniences of

the filtered backprojection method, its numerical simplicity, would be Tost when

more general weight functions are used. For example, convolution as need in the



filtered backprojection, can be executed very fast in the Fourier domain.

An interesting aspect of the choice of different filters is the
following urcertainty nrinciple. Consider the reconstruction of a
function f(x) by use of a desired point response function Q1(§) which
is normalized by s Q1(5)d§?1. Next assume the point response function
to be scaled by 01?5)=t2Q(t5), t>1, which increases spatial resolution

while preserving the normalization. Then, while minimizing the error

between Qt and its approximation 1/m ZBi(ati) for all filters Gyio that
is minimizing for all t>1 with resnect to (“ti) the quantity
7 [Q,- 1 B, (a, )12 (2.7)
D ) e T Y E
implies [10]
1 1 A 1 2
GRQUSE L NONI IS L O (2.8)

D
Roughly, this implies the product of spatial resolution and contrast
resolution (error) are bounded (from below) for increasing spatial resolution.
This result has a similar character as one arising in a stochastic environment
(Section 2.3).

After this basic introduction into some of the aspects of filtered
back projection we will turn to the limited scan problem. This will give
the ooportunity to introduce aspects unique to discrete representation of

picture elements.

2.2. The Tlimited scan approach - deterministic aspects
Similar to the one before we will consider the arrangement shown
in Fiqure 2.2. However instead of using continuous functions f we consider

picture elements (nixels) over which the function is constant



f(x,y) = p(i,j)s; id £ x < (i+1)d (2.9)
jd <y < (j+1)d
0 ; otherwise
Also, we replace the line integrals defining projection P in equation (2.1),

be integrals over narrow stripes of width A and area A and evaluate

P f(s)=17r57 f(su

u, +tn )dudt (2.10)

/
A
We may select only discrete values of s in the direction of ge which is

expressed by
s=k - A (2T

In this case we can stack all p(i,j) into a vector a by setting
a(g) = o(i,j), 2 = n(i-1) + j as shown in Figure 2.2, 1<i,j<n.
Similarly stack all 5ef(kA) for all directions of & into a vector b
and express the linear relationship between a, the pixels and b, the

measurements by

b = Aa (2.12)

Here, the reconstruction problem is to find a given b. Clearly for
arbitrary A a solution need not exist (inconsistency), there may be a
unique solution - or infinitely many.

A general solution to (2.12) is given by [35].
a=Ab+ (H-I)z (2.13)

where A~ is any generalized matrix inverse (g-inverse) of the M x N matrix
A, satisfying A A"A=A, H = A"A, and z is arbitrary. The solution is
complete if A™ has maximum rank regardless of rank [A], that is rank [A™]

min (M,N). Note that rank [A] need not be maximal e.g. rank A<min[M,N].

10



Since we assume Equation (2.12) to be constructed from Equation (2.10)

consistency of solution will at the moment not concern us (here it may be used to

check numerical accuracy). What does concern us is the possible uniqueness
of solutions in Equation (2.13). Clearly, if H-I a is unique, and required
rank [A] = rank [H ] = N. These relations suggest the following terminology:
the full scan provides us with rank[A]=N, while the Timited scan technique
is one which provides us with rank [AJ<N.

We will pursue now limited scan techniques somewhat further. For
a general matrix A it may not be easy to find its rank numerically.
However it is useful to look at certain special cases for which the rank
can be determined analytically. For this purpose consider the arrangement
of projections shown in Figure 2.3. For squares with unit area the matrix

A in Equation (2.12) becomes

n-times
[ B a
1111
18 N-times
1111
A = 1111 (2.14)
1 1 1 1
1 1 1 1
1 1 1 1 N-times
| 1 1 1 ]J

For this matrix we have M=2n, N=n2 and, as can be shown easily by

elementary row operation, rank[AEM-1. (We remark - if the width

of stripes for projection in Equation 2.11 is made smaller rank A=2n-1 regardless of M)
An interesting question concerns now the part (H-I)z in Equation (2.13)

since this part is independent of measurements b. In particular we are

interested in understanding the pattern of values of pixels p(i,j) which

correspond to this part. This problem may be approached in the following

11



iZl s 552550 ,j=n

n-stripes
P EEREE e S
1 1 2 3 _4_5 6 i=1
- ) - ~
2 6,8 9 10 11\12 i=2
1 / ~ 7~ \
N
3 13 14718 \ i=3
1 ‘ [ { \
4 \ (W5
B \ N -p / /
\_' -~
5 \ ’ ¥
L] '\ S
6 N e = i=n
A
b
T  I— I I I I |

Fiqure 2.3: Relation of picture elements (pixe]s} p(i,j)=a(r)
to projections b(k) for 2-scan technique.

density a(2)=0

density a(1)=2- m
Il

l
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Figure 2.4: A basic pattern which is not observable bv the 2-scan

technique of Figure 2.3. This pattern can_be moved into (n--])2
position and forms a complete basis for all unobservable

pattirns (assumption of shift in only multiples of the smallest
unit).
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way: we look for a set of k Tinearly independent patterns with k= rank [H-I].
These (non-unique) patterns correspond to a basis in the non-observable part

of the space of a and may be regarded as basic non-observable patterns. One
solution for a set of basis vectors is one corresponding to the patterns shown

in Figure 2.4. There are clearly (n-])2 such patterns, each of which is linearly
independent of all others. In order to show that this set is also complete

(e.g., spans all of (H-1)z)find rank [H-I]. Now since (I—H)2

=(I-H), that is,
(I-H) is idempotent, and rank [H] < rank [I],
rank [I-H]=trace[I-H]=trace[I]-trace[H] (2.15)

Furthermore

rénk [H]=rank[A"A] = min(rank[A 1, rank [A])
= rank [A] (2.16)

since rank [A"] > rank [A] (35). So we have rank [H]=M-1 =2n-1.

Thus with trace [I]=n2 we obtain from Equation (2.15)
-2 L 2
rank[I-H]=n"-(2n-1)=(n-1) (2.17)

Hence the (n—])2 pattern as shown in Figure 2.4. form a complete basis of
the unobservable space. In other words, all other unobservable patterns
can be formed by Tinear combinations of these basic patterns. Some
examples are shown in Figure 2.5.

The consequence of this above result is, one should avoid positioning
of objects, which are to be examined, in such a way that critical components
form these basic patterns. Actually, one should avoid all positions which
form any Tinear combinations of these basic patterns. For simple objects
with only few critical places this may easily be judged. In the more

general case, when there are many critical locations one should write down

i3



Figure 2.5: An example of an unobservable pattern generated by the
linear combination of basic unobservable patterns (2-scan
technique), of Figure 2.4.

three scan directions

Figure 2.6: A basic unobservable pattern for the three scan
directions shown.



the projectionmatrix L of just these k locations and examine whether the
rank of this projection matrix is equal to 2. If so there is no problem

in detecting abnormalities. If, however, rank [L]<e it is either necessary
to position an object differently or to take additional measurements until
rank [ L]=2.

A11 the considerations discussed here carry easily over to the three
scan technique. In order to obtain a simple matrix A here it may be more
usuful to consider six cornered pixels giving an arrangement 1ike in
honey combs. For such an arrangement the corresponding matrix A is easily
written down for a given range of pixels and allows again analytic
evaluation of its rank. From analogy considerations to the two-scan
technique a set of basic unobservable patterns will have the shape shown
in Figure 2.6.

For the fan beam 2-scan technique the choice of a convenient shape
of pixels is somewhat more difficult. But consider that this arrangement
corresponds to a collinear transformation of the parallel beam configuration
as shown in Figure 2.7 and may thus be analyzed similar to the parallel
beam problem. In some situations it may be useful to combine pixels
especially near the X-ray source if it is desired to maintain approximately
constant pixel area. The same approach of a collinear transformation
can be taken for the 3-scan technique (Figure 2.8 ). Al1 of above
results will thus not change since (except for the focal point) they
are in a 1-1 correspondance to the parallel beam configuration.

In summary, the complete solution to the inverse problem
b=Ax is given by Equation (2.13). It is clear that for an increasing
number of pixels the solution space x grows very fast regardless of the

spatial resolution of the detectors (Equation 2.17). Thus, in order to say

15



i 2

"-\-u_\_‘___‘_‘_\_ g

Figure 2.7: Collinear transformation, as in perspective, can be
used to transform the 2-scan parallel beam projections

into a fan beam geometry with X-ray sources at Fl and FZ'
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Figure 2.8: Provided that all three X-ray sources F., F,, F, lie on a
straight line a collinear transformation of the parallel beam
geometry permits to use a transformed honeycomb pattern for picture
elements while maintaiging the projection matrix A simple.



more about x given b more constraints have to be placed on X. Beside the
introduction of additional scans in new directions, this space can be
constrained in a probabilistic way and is subject of the following section.
2.3 Probabilistic approaches

This section starts out with an exposition of the problem in a Bayesian
framework. Then, a simple model for quantum mottle in measurement is intro-
duced and approximations for dealing with the nonlinear relationship between
image and measurements are developed. Next, two limiting situations and their
value for the limited scan problem is assessed.

One Timiting situation assumes large measurement noise - the other
perfect measurements. In this latter case the stochastic nature of the problem
is maintained by assuming an object of constant average density, but with
random variations of this density. It is shown, for the two-scan technique,
that an optimal detection scheme is computationally not feasible and that one
version of a suboptimal scheme which uses the correlation structure of measure-
ments discriminates quite well against flaws.

Another suboptimal approach, neglecting the correlation structure of
measurements, is shown to perform similarly well. In this approximation, the
distribution function of certain random variables remains unchanged except for
the mean, when alternative hypotheses are made (presence vs. absence of a flaw).
With this suboptimal approach a sequential probability ratio test is ultimately
developed and an example of its performance is given. The main conclusion is
that for most materials with random density variations in the percent range, a
rather large number of scans has to be performed in order to decide about the
presence of flaws. For the example given, (with rather large quantum mottle)
this number comes closestto the number used for full scan tomography. However,

the average cost due tousing this procedure is shown tobe small, almost independent of

17



the loss which would arise with failure of the component due to presence of
a flaw, simply because the probability of errors is extremely small.

Let us turn now to the exposition of the new framework. Probabilistic
considerations enter the limited scan and the full scan techniques in
several ways. Two important aspects are the well known quantum mottle
and the, possibly not so obvious, random material density variations. The
latter may result from variations in chemical composition, microporosity
or, on a still larger scale, from variations.of location of fibers such as
in woven performs.

As before we consider the evaluation of (the absorption due to) pixels
p(i,j) represented by a vector o given some measurements b. This time
however we have a probabilistic description of the absorption of the
pixels and a probabilistic description of b even when a is fixed; this
latter description accounts for uncertainty due to quantum mottle. More
formally we assume to know the distributions p(a) and p(b|a) and wish to
obtain the distribution p(gjg). This problem is solved formally by Bayes

rule

(2.18)

In practice, solving equt. (2.18) can be difficult or even impossible.
This is due to the necessary integration in the denominator of Equation
(2.18). For our purposes of image analysis this integration has to be

¢ — 106 dimensional space when images with 100x100

performed over a 10
or 1000x1000 pixels resolution are desired.

Several approaches exist to dealing with this problem. Mainly, they
are based on approximations. First, one may try to replace the general

distribution with certain types of analytic approximations which then allow

18



analytic integration. Second, especially when the prior distribution is
"flat" such as when a is highly uncertain, p(gjg) can approximate the
shape of p(a|b) (the denominator, when the measurements b are given
reoresents merely a scaling). We note that maximizing p(gjg) leads to
the so-called maximum Tikelihood (ML) - estimator which has often many
desirable properties.

The approach based on analytic approximations uses distributions
for which the posterior p(a|b) belongs to the same simple family of
distributions as the prior p(a). However the distribution pair p(bla)
and D(g) need not belong to the same family of distributions and are
called conjugate. Typically, these conjugate pairs are used for sampling
schemes for which b is a linear function of a. If this condition of
linearity is not met (as in X-ray imaging) further approximations are
necessary to estimate a.

At this point an important aspect of estimation should be clarified.
Estimation is closely linked to cost structures in a problem. For
example, an estimate of a quantity is a good (bad) estimate if the
expected cost associated with it is small (large). For many reasons the
quadratic loss functions in the error of an estimate arises naturally, and
s used in analysis of many problems. Thus for an estimate g’of a

quantity x we associate often the loss

L(x) = (x-x)' M(x-x) > 0 (2.19)

and the risk (the average or expected loss over all estimates x)

~

E[L{x)] > 0 (2.20)

where M is some positive (semi) definite matrix. The matrix M will

typically reflect the particular cost structure in the neighborhood of the

19



true value x. The objective in estimation can now be viewed as the problem
of finding the minimum of E[L(X)].

After these preliminary remarks on finding probability density
functions and good estimates we may turn to the particular oroblem of CT-
scanning. First we wish to find an approximation to the nonlinear
relation of material density to photon count. A frequently used approximate
model assumes exponentially declining photon flux. Thus for a source

releasing Io photons a detector sees on the average
wp= E[1] = 1) exp (- 7 f(t,s) dt ds) (2.21)

The distribution of the photon count is well described by a Poisson

density

p(D) = et 5 s(1-k) (2.22)
k=0
When the photon count is large one can make use of a Gaussian approximation

F of the cumulative Poisson distribution P, e.q.
P(I <C) = F(I <C) + ¢ (2.23)

where ¢ is often negligible. For E[I] of more than a few hundred, which
will be a typical situation in X-ray imaging, this approximation is very
useful. Once we characterize the photon count by a Gaussian distribution
we need only to specify its mean and variance to specify the entire

distribution. For this case one has

o°p = EL(I-u )] = g (2.24)

Consider now the problem of estimating G= s f(t,s). It is well known
A
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that the ML-estimator of G formed by

éb= —en 1/To (2.25)

leads to biased estimators e.q. E[éb-G]=g¢0 [Reference 36]. This implies that a risk

of the type (Equation 2,20) is not minimized by é However it is easily shown

b
that correcting for this bias by using

G = éb-g (2.26)

does minimize Equation (2.20). Rockmore [Reference 36] gives for g (for the Poisson-

case)

g=] =l o g3 = +...Jr (2.27)

2uy 12u§

For us the problem exists that, due to the material uncertainties, we

do not know My 2 priori. So, again we have to use an estimator-
possibly one a posteriori. It appears that for the situation in limited
scan CT for NDE the bias could easily be made small relative to other

effects such as the uncertainty expressed by the standard deviation of

~

G.

The variance of G is given by [36 ] as

i It should be made clear, however, that this series expansion requires
for its convergence a pseudo-Poisson variate of I: namely it is
required that P[I=0]20. Since P[I=0]=e~®I for a Poisson variate this
auantity is indeed extremely small for u,> 100. The requirement
P[I=0FDcan be satisifed by rejecting any measurement with I=0. In
fact we can even afford to reJect all I<y /2 provided uI>100 For

example for uI'100 P[I<50]<1O So in a]] series expansion in which
we may need an estimate of 1 and replace it by I, convergence occurs

rapidly with Targe probability. It appears that with much larger
probability other effects would result in degradation of performance

of any practical estimation scheme than are due to above approximations.
Subsequent expansions are all based on this approximation.
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3z (2.28)

Thus even for "small" photon counts in the order of a few hundred
the ratio of g//v is only a few percent. Nevertheless it is easy to
correct - at Teast to first order - the bias by using the revised

estimator (for I large, say I>100)

N

6' = -an(1/Io) + 71—1— (2.29)
From some rough calculation (using a simple Tinearization technique and
a 4o threshold) one can evaluate performance for this estimator:
with only .01 percent probability does the residual bias exceed a
fraction f = 4//T of the uncorrected bias. This suggests that the ratio
of residual bias to standard deviation exceeds 2/1 in Jess than .01 percent
of all cases. One may argue further that of the order of I independent
measurements are necessary to detect with 95% probability such small
bias. Of course, if desired a still more sophisticated approach may be
used to correct bias but other uncertainties associated with the polychromaticity of
X-rays will become important suggesting a more rigorous modeling of
nonlinearities (Section 4.2).

Let us return now to the general problem of estimating p(a|b).
As we have shown, the relation between a and b are nonlinear - but we
discussed how, and under what conditions (e.g. I1>100) Tlinearization of
that problem becomes usuful. We may thus consider the linearized
estimation problem (1linearized around the measured b). For the Tlinearized
problem the probabilistic relation between a and b are (in contrast

to Equation 2.12) described by

p(a) = Ny . 2,) (2.30)
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and

p(bla) = Mupa)s 5p,(a)). (2.31)

As can easily be shown, due to linearization the second order moment
in terms of zb|a(a) is approximated by Zb[a(“a)' (If such an
approximation is insufficient certain iterative procedures described
by [Reference 21] can be used).

We are now in the position to solve approximately Bayes theorem
Equation (2.18); p(pjg) and p(a) are conjugate distributions which are
fully described by their first and second moments y and © respectively.
In this case the posterior mean Ha|b and covariance matrix Za|b are

found by the Kalman Filter algorithm [References 21, 37].

Ha|b Sl = Wb - A*Ea]’ (2.32)
W=z, AT [Axs AxT 4 zb]'], (2.33)
Za|b =By - W A*za. (2.34)
Here however
3b
W= B (2.35)
and with Eguation (2.29)
by = -an(L/I0) + 5 (2.36)
i

It is easily shown (Appendix A2.1) that A* is closely related to A in
Equation (2.12) by

e 14 A (2.37)
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being equivalent to a slight rescaling of the dependent variable b.

The convariance matrix Zb|a is, due to the independence of quantum mottle

between detectors, diagonal:

\)-I Q

z = V2 (2.38)

L O o
where from Equation (2.23) we may use for the estimates of vy the series

= b oes , 48

i el 2z
i i

x +o.. (2.39)

which converges with large probability rapidly (for u1>100)-

We are now in the position to answer some questions for the limited
scan problem. First let us consider the problem of using transmission
data which is relatively noisy due to quantum mottle rather than

material density variations. More formally assume

T x
x' A% 3 A IF o ol Zp|a X (2.40)

__ 12 _ 2
and Tet A = caI and Zbla = oy I. For the purpose of the current
analysis replace also A*by A (Equation 2.37) as this simplifies notation and
does not change any of the conclusions. In this case we can approximate

Equations (2.32)-(2.34) by

-2 ,T
- 2 A'A)y. + Wb =y + Wb
Ha|b = (I-ora Ob Ha Z ~Ha
z 2 =2 .7
W O 19 A
< 2 -2 T,y = 2
Zalb o (I-caorb A'A) gy I
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Roughly, what is seen in this algorithm is very similar to the unfiltered
backprojection method - data in b is evenly distributed in its effect over the
corresponding strip i over which measurement i has been taken, weighted by the
ratio of "signal" power (c2a) to measurement noise power v, .

Let us evaluate the useful range of above model. For our situation, assume
materials with By X% density variation over, say 5mm x 5mm pixels and assume
n = 100, corresponding to an X-ray path of 500mm. The standard deviation of a

projected measurement is

% = oo = 10x% 2.42
This quantity was assumed to be small compared to quantum mottle, e.g.,
o, < Vv 2.43

or by Equation (2.28)

21
Op < (UI) 2 2.44

We assume usually M > 100 and thus require
1

v?ﬂi; << (pI)_E 2.45
In this case, we obtain the requirement
0y << %8
or x<1. 2.46
As an alternative way to investigate the estimation problem, we may
check what happens if we perform very precise measurements, e.g., I, =+, Ii/IO+C1 in
Equation (2.36) and look at the simple 2-scan problem. In this case, we encounter
a difficulty with Equation (2.33). The matrix A*zaA*T + %p|a becomes singular
since rank [A] as defined is not maximum and Zbla +0. There are several ways
to deal with this situation. A simple possibility is to eliminate those rows
of A in equation (2.14) which are linearly dependent on all others; omitting
for example the last row would generate a new matrix A with maximum rank. Thus

we are again in a position to use, although with one less measurement (but without
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loss of information) Equations 2.32-2.34. Now we obtain

T v 2Tq-1 % ATr 1-1
Ya b [1- zaA [AzaA 1 A] .. R [~] b 2.47

ap = [1- 5, AT 171, (2.48)

Here we would again like to know how an estimate is modified by

By
perfect measurements b and to what extent the precision of this
estimate is changed.

For this purpose consider the model of equal uncertainty throughout
all oixels, and that no pixel depends on any other pixel (maximum

entropy). This corresponds to

2

Iy = o, I (2.49)
To investigate this problem we computed the matrices A, A AT, (A AT)_],
AT(A A)™! and AT(A AD)A for n = 1,2,3,4 (Tables 2.1. - 2.4). As

expected these matrices exhibited some simple patterns for the
distribution of their elements. Furthermore by checking the elements
for n=2 and n=3 a simple relationship of their values to n was found
and confirmed for n=4 and 5.

The matrices A and A AT are trivial and we refer simply to tables

2.1-2.4. Somewhat more interesting were the matrices (A AT)'] (which

we will use repeatedly), the update matrix AT( A AT)'] and the matrix
AT(~)']A which expresses improved precision in the description Ea|b

of the material. We found that only a few distinct values could arise
in the matrices and there is good reason to believe that these are

all possible values for any n. The values relate to the following:

the relation of one pixel to itself
the relation of one pixel to the stripe in which it is contained;

1
2
3. the relation of one pixel to another pixel within the same stripe;
4. the relation of one pixel to one in another strive;

5

and whether measurements relate to the side on which one strip
of measurements has been removed (recall the last row of A has
been omitted).
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TABLE 2.1: Matrices A, AAT, (AAT)ZY, aT(aaTy ™!, ATy 'a
for n=1; Note: det(AA')=1

$ RUN TOMOMAT

DIMEWSION OF N = 7
1
1.000
AAT=
1,006
IOGTs 01y D2y IER = S0 1.000 0.000 Q

(Aa" 4 =
1,000

AT (AR E =
1.000

AT (AN 1A =
i 5 BI0TE

S

TABLE 2.2: Matrices A, AAT, (AAT);1, aT(aah) ™Y, aT(aaTy 1A
for n=2; Note: det(AA')=4

PLUN TOMOMAT

IFENSION OF N = 7

1L.000 1040 D000 Q. G000
0.000 2.000 1,000 1L.000
1.000 0.000 1.000 0.000
AAT=
2:.000 Q.00 l.000
0.0C0 2.000 1,000
1.000 1.200 2.000
IGOT»l 025 IER = 7 0.250 4000 0

Can" ) =
0.750 0.2530 0,300
0,250 0.750  ~0.500
=0.500 ~-0,500 1,000
AT (AATYE =
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For these various matrix elements ts it has been found for nxn pixels

(see table 2.1-2.4) which are, ordered by magnitude
example of location

tg = (Eﬂ%l> relation for a pixel to itself
n
t] = to %%:T> .... for pixels within a stripe for side
with all stripes measured
t2 = t](ﬂ%l) within stripe for side with omitted stripe
t3 = t2 (%) between pixels not sharing a stripe
t4 =0 . for update from side with omitted
stripe
|M|:=|AAW = n2(n—1) determinant (2.50)

What is important here is the asymptotic behavior as n+ . It is seen
that, as one might suspect also from other considerations, the

behavior of these terms, is

to =~ 2/n

t] = 1/n
(2.51)

t2 = ]/n

2

t3 = 2/n

Checking some more the behavior of AT(A AT)—] suggest again a performance
of updating the pixels (except for the ones in the stripe corresponding

to the missing row in A) very similar to the filtered back projection

(Figure 2.9). Note, that the mean of a3 5 changes by

Buy i3 = b1.t2 + bjt] =(bi+bj)/n (2.52)
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Figure 2.9: Example for updating when b' = (1,0,0,0,0,0,0).
The element [1] is not observed as it must be linearly
dependent on all other values in b. This example is

obtained from AT(AAT)" in Table 2.4.
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Figure 2.10: Distributions of the quadratic terms Q and Q' where xTMx
is used. Q will typically arise in the problem
formulation associated with H0 and Q' with Hk' If however

a flaw ¢ at Tocation k is known a complimentary quadratic
form (x-e)TM(x-¢) can be set up. For this form the role« of
) and Q' are reversed.
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if both strioes i and j are measured. However it changes by

AT bi “ty 2b1/n (2.53)

for the column j in the image which contains no measurement - as the
corresponding observation in A has been omitted. Note that from Equation
(2.50)t] +tt, =t With regard to the variance for pixel a(i,j) observe
it declines only by a factor of (1-t0) which does not seem to be of much
significance. Note: Za|b is strongly diagonal although only of rank (n—1)2.
In order to detect and Tocate a change in density it will be required
to have a large change Buy relative to og. This is somewhat of a problem
as will be shown because t;gre is only weight b1.t2 added to the strip containing
all pixels p(i,j) i=1...n and weight bjt3 to the strip containing all pixels
p(i,3) i = 1...n (aside from those corresponding to the missing row in A).
Performance of a flaw detection and Tocation scheme, based on this information,
can now be approached by formulating a decision problem [Reference 11].
2.3.1 Decision theoretic approach
Let the parameter space @ in the presence of a single flaw (in

a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>